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Abstract. We provide a summary of the pre-print ‘Model

Vulnerability to Distributional Shifts over Image Transfor-

mation Sets’ (arxiv.org/abs/1903.11900) [22].

1. Introduction

When we devise and deploy a machine learning system,

a generally desirable property is its ability to generalize to

unknown scenarios. For example, we would like a vision

module (e.g., for a self-driving car) to perform well under a

broad variety of visual conditions and environments. Albeit,

modern learning systems are well known to be vulnerable

to the dataset bias issue [6, 2, 1, 19]: when trained on data

from some distribution, they will typically learn the pecu-

liar statistics of the training data, and in result will perform

more poorly in different settings.

In light of this, two fundamental research directions are

(i) training more robust models against the distributional

shifts that they might encounter after deployment – domain

adaptation [6, 2, 16, 4, 20, 18, 13, 21] and domain gener-

alization [9, 14, 15, 17, 12, 23, 10, 11, 23] are possible di-

rections to face this problem – and (ii) developing tools to

understand the vulnerability regions of a model before its

deployment. In this work, we propose methods related to

the second branch, and further exploit them to devise algo-

rithms associated with the first one.

Focusing on computer vision models, we start from the

assumption that, given a set of standard, content-preserving

image transformations, we can generate a huge set of possi-

ble distributional shifts by concatenating them and applying

them to the datapoints at our disposal. We propose a com-

binatorial optimization problem aimed at detecting the con-

catenations of different transformations that a given (black-

box) model is most vulnerable to, and face it through ran-

dom search and evolution-based search.

Endowed of these tools, we propose a training procedure

where, over iterations, harmful image transformations in the

given set are searched, and used as data augmentation rules

throughout the training procedure. Models trained with our

method, not only are more resistant against the transfor-

mations from the provided set, but also better generalize

to unseen scenarios. For example, we propose results as-

sociated with a semantic segmentation module trained on

∗Istituto Italiano di Tecnologia, Pattern Analysis and Computer Vision
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Figure 1. Image transformations (e.g., the rightmost part of the top image)

can cause distributional shifts that models are not able to handle (bottom-

left). Models trained with the methods proposed in this paper are more

robust against a variety of image transformations (bottom-right)

CamVid [3], showing that it better generalizes to foggy sce-

narios even though it has never encountered them during

training.

2. Problem formulation

Let M(.) be a model that takes in input images and pro-

vides an output according to the given task. Let D =
{(x(i), y(i))}mi=0 ∼ P (X,Y ) be a set of datapoints with

their labeling, drawn from some data distribution. Finally,

let T = {(τ (i), l
(j)
i ), i = 1 . . . NT , j = 1 . . . Ni} be a finite

set, where each object t = (τ (i), l
(j)
i ) is a data transfor-

mation τ with a related magnitude l. The transformations

give in output images in the same format as the input ones.

We define a concatenation of different transformations as

a transformation tuple; TN is the set of all the possible

transformation tuples that one can obtain by combining ob-

jects in T. We define T with the following transformations:

autocontrast (20), sharpness (20), brightness (20), color

(20), contrast (20), grayscale conversion (1), R-channel en-

hancer (30), G-channel enhancer (30), B-channel enhancer

(30), solarize (20), where the numbers in parenthesis in-

dicate the number of different magnitude levels (Table 2

in [22]). Armed with this set, we propose the following

combinatorial optimization problem

min
T∗∈TN

f(M, T
∗
, D) (1)

where f is a function that measures the accuracy of a

model M provided with set of labelled datapoints D, modi-

fied through a transformation tuple T ∗. The N−tuples that
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Algorithm 1 Robust Training

1: Input: D = {(x(i), y(i))}ni=1, init. weights θ0, N−tuple set

TN , init. data augmentation set Ttr , learning rate α, loss ℓ.

2: Output: learned weights θ

3: Initialize: θ ← θ0

4: for j = 1, ..., J do

5: Minimize ℓ through k SGD steps using data sampled from

D modified with transformation tuples sampled from TN

6: Find T ∗ ∈ TN by running RS or ES on a subset of D and

append it to Ttr

induce lower f values are the ones that a model M is more

vulnerable to, with respect to the chosen metric.

Search algorithms. In order to approach the combinato-

rial optimization problem 1, we rely on Random Search

(RS) and Evolution-based Search (ES). In RS, we test an

arbitrary number of transformation tuples from the set TN

and choose the one that leads to the lowest f value. In ES,

we use standard operations from the genetic algorithm lit-

erature (selection, mutation and cross-over) to find harmful

transformations more efficiently; for the details, we refer to

the original work [22].

3. Training more robust models

We define a training procedure to learn models (Con-

vNets [8]) robust against image transformations from an

arbitrary set as follows: (a) we initialize a transformation

set to sample from during training (the “data augmentation

set” Ttr) with the identity transformation; (b) we train the

network via gradient descent updates, augmenting samples

via data augmentation procedures sampled from Ttr; (c) we

run RS or ES, using appropriate fitness function f and tuple

set TN , and append the so-found transformation to Ttr. We

alternate between steps (b) and (c) for the desired number

of times. See Algorithm 1 for a detailed view.

4. Experiments

In our original work [22], we have tested our search

methods and training procedure on a variety of tasks. We

report here the results associated with a semantic scene seg-

mentation task (FC-DenseNet [7] with 103 layers trained on

CamVid [3]), and refer to [22] for the other results (as well

as for the description of the hyper-parameters). In Algo-

rithm 1, we set the number of transformations concatenated

as N = 5 and use the cross-entropy function between the

output of the model and the ground truth labels as loss ℓ.

Figure 2 shows the output of a model trained via stan-

dard Empirical Risk Minimization (middle row) and the

output of our model (last row), when the original input (first

column) is perturbed by different image transformations

Figure 2. A sample from CamVid (column 1, row 1) modified with image

transformations found via RS and ES (columns 2 – 5, row 1). Rows 2 and

3 report the output of a model trained via standard ERM and a model train

through Algorithm 1 with ES, respectively.

Performance of CamVid models

Testing

Method Original RS ES Fog [5]

ERM .862 ± .007 .458 ± .027 .311 ± .013 .726 ± .017

Ours .851 ± .002 .820 ± .007 .822 ± .008 .744 ± .006

Table 1. Pixel accuracy of CamVid models trained with standard ERM

(first row) and with Algorithm 1 (second row), and tested in different con-

ditions (columns). Results obtained by averaging over 3 different runs.

found via ES (first row). These results qualitatively show

that models trained through Algorithm 1 are more resistant

against image transformations; furthermore, they show that

the transformations in TN are reasonable approximations

of possible visual conditions that a computer vision model

might face after deployment. For example, images in the

first row, second and third column, can be interpreted as

simulations of the light that one could face during dawn

or sunset—and in which the baseline model we compare

against performs poorly.

Table 1 reports the pixel accuracy values. The columns

RS and ES indicate the lowest values obtained by running

the two search procedures using models trained via standard

Empirical Risk Minimization (ERM) and with our method

(first and second row, respectively) They confirm the higher

level of robustness of models trained through Algorithm 1,

using ES as search algorithm (line 6). The last column

shows results obtained by manipulating the images with ar-

tificial fog [5]; also in this case, our models show better

generalization properties.

5. Conclusions

We propose a combinatorial optimization problem to

find harmful distributional shifts for a given model, defined

in terms of concatenations of image transformations from

an arbitrary set. We show that random search and, in par-

ticular, evolution-based search are effective approaches to

face this problem. Further, we show that the these search

algorithms can be embedded in a training procedure, where

harmful transformations are searched and used as data aug-

mentation rules throughout training.
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